首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374072篇
  免费   35499篇
  国内免费   21932篇
电工技术   40282篇
技术理论   26篇
综合类   33982篇
化学工业   52754篇
金属工艺   19302篇
机械仪表   23432篇
建筑科学   24938篇
矿业工程   12039篇
能源动力   13394篇
轻工业   17713篇
水利工程   8307篇
石油天然气   12367篇
武器工业   4670篇
无线电   38512篇
一般工业技术   31609篇
冶金工业   13936篇
原子能技术   4271篇
自动化技术   79969篇
  2024年   543篇
  2023年   4800篇
  2022年   7680篇
  2021年   11803篇
  2020年   10275篇
  2019年   8555篇
  2018年   8092篇
  2017年   10768篇
  2016年   13161篇
  2015年   14735篇
  2014年   23313篇
  2013年   21802篇
  2012年   26332篇
  2011年   28609篇
  2010年   21892篇
  2009年   22957篇
  2008年   22273篇
  2007年   28127篇
  2006年   25763篇
  2005年   22239篇
  2004年   17870篇
  2003年   16022篇
  2002年   12259篇
  2001年   9731篇
  2000年   7988篇
  1999年   6512篇
  1998年   4814篇
  1997年   3836篇
  1996年   3561篇
  1995年   3077篇
  1994年   2647篇
  1993年   1888篇
  1992年   1528篇
  1991年   1171篇
  1990年   988篇
  1989年   808篇
  1988年   554篇
  1987年   359篇
  1986年   269篇
  1985年   262篇
  1984年   236篇
  1983年   174篇
  1982年   172篇
  1981年   157篇
  1980年   152篇
  1979年   97篇
  1978年   60篇
  1977年   58篇
  1962年   69篇
  1959年   45篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
61.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
62.
传统通信模拟系统设计较为复杂,导致模拟过程消耗能量较大,不能准确模拟稳频通信质量。因此,提出基于Matlab的量子激光雷达稳频通信模拟系统。由于振荡器是雷达形成初始信号源的基础,通过分析振荡电路与相位噪声,获得相位噪声函数与通信频率存在的关系;为确保通信过程的稳定,将准确性与稳定性作为信号质量的评价指标,并采用锁频环稳频技术计算频率偏移程度,根据PID控制算法控制频率,量子激光雷达稳频通信;利用Matlab确定激光器、探测器等硬件组成结构,通过时序与数字阵列的设置完成模拟系统设计。仿真结果表明所提系统结构简便、性能稳定,能够真实模拟出稳频通信的信号质量。  相似文献   
63.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
64.
Exposure to particulate matter (PM) is becoming a major global health issue. The amount and time of exposure to PM are known to be closely associated with cardiovascular diseases. However, the mechanism through which PM affects the vascular system is still not clear. Endothelial cells line the interior surface of blood vessels and actively interact with plasma proteins, including the complement system. Unregulated complement activation caused by invaders, such as pollutants, may promote endothelial inflammation. In the present study, we sought to investigate whether urban PM (UPM) acts on the endothelial environment via the complement system. UPM-treated human endothelial cells with normal human serum showed the deposition of membrane attack complexes (MACs) on the cell surface via the alternative pathway of the complement system. Despite the formation of MACs, cell death was not observed, and cell proliferation was increased in UPM-mediated complement activation. Furthermore, complement activation on endothelial cells stimulated the production of inflammation-related proteins. Our results revealed that UPM could activate the complement system in human endothelial cells and that complement activation regulated inflammatory reaction in microenvironment. These findings provide clues with regard to the role of the complement system in pathophysiologic events of vascular disease elicited by air pollution.  相似文献   
65.
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.  相似文献   
66.
Polycomb group (PcG) proteins are epigenetic regulators that facilitate both embryonic development and cancer progression. PcG proteins form Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). PRC2 trimethylates histone H3 lysine 27 (H3K27me3), a histone mark recognized by the N-terminal chromodomain (ChD) of the CBX subunit of canonical PRC1. There are five PcG CBX paralogs in humans. CBX2 in particular is upregulated in a variety of cancers, particularly in advanced prostate cancers. Using CBX2 inhibitors to understand and target CBX2 in prostate cancer is highly desirable; however, high structural similarity among the CBX ChDs has been challenging for developing selective CBX ChD inhibitors. Here, we utilize selections of focused DNA encoded libraries (DELs) for the discovery of a selective CBX2 chromodomain probe, SW2_152F. SW2_152F binds to CBX2 ChD with a Kd of 80 nM and displays 24-1000-fold selectivity for CBX2 ChD over other CBX paralogs in vitro. SW2_152F is cell permeable, selectively inhibits CBX2 chromatin binding in cells, and blocks neuroendocrine differentiation of prostate cancer cell lines in response to androgen deprivation.  相似文献   
67.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
68.
69.
The electrode materials with high pseudocapacitance can enhance the rate capability and cycling stabil-ity of lithium-ion storage devices.Herein,we fabricated MoS2 nanoflowers with ultra-large interlayer spacing on N-doped hollow multi-nanochannel carbon nanofibers(F2-MoS2/NHMCFs)as freestanding binder-free anodes for lithium-ion batteries(LIBs).The ultra-large interlayer spacing(0.78~1.11 nm)of MoS2 nanoflowers can not only reduce the internal resistance,but also increase accessible active sur-face area,which ensures the fast Li+intercalation and deintercalation.The NHMCFs with hollow and multi-nanochannel structure can accommodate the large internal strain and volume change during lithi-ation/delithiation process,it is beneficial to improving the cycling stability of LIBs.Benefiting from the above combined structure merits,the F2-MoS2/NHMCFs electrodes deliver a high rate capability 832 mA h g-1 at 10 A g-1 and ultralong cycling stability with 99.29 and 91.60%capacity retention at 10 A g-1 after 1000 and 2000 cycles,respectively.It is one of the largest capacities and best cycling stability at 10 A g-1 ever reported to date,indicating the freestanding F2-MoS2/NHMCFs electrodes have potential applications in high power density LIBs.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号